Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells.
نویسندگان
چکیده
Due to frame-shifting mutations in the DMD gene that cause dystrophin deficiency, Duchenne muscular dystrophy (DMD) patients suffer from lethal muscle degeneration. In contrast, mutations in the allelic Becker muscular dystrophy (BMD) do not disrupt the translational reading frame, resulting in a less severe phenotype. In this study, we explored a genetic therapy aimed at restoring the reading frame in muscle cells from DMD patients through targeted modulation of dystrophin pre-mRNA splicing. Considering that exon 45 is the single most frequently deleted exon in DMD, whereas exon (45+46) deletions cause only a mild form of BMD, we set up an antisense-based system to induce exon 46 skipping from the transcript in cultured myotubes of both mouse and human origin. In myotube cultures from two unrelated DMD patients carrying an exon 45 deletion, the induced skipping of exon 46 in only approximately 15% of the mRNA led to normal amounts of properly localized dystrophin in at least 75% of myotubes. Our results provide first evidence of highly effective restoration of dystrophin expression from the endogenous gene in DMD patient-derived muscle cells. This strategy may be applicable to not only >65% of DMD mutations, but also many other genetic diseases.
منابع مشابه
Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice.
Duchenne muscular dystrophy (DMD) is a hereditary disease caused by mutations that disrupt the dystrophin mRNA reading frame. In some cases, forced exclusion (skipping) of a single exon can restore the reading frame, giving rise to a shorter, but still functional, protein. In this study, we constructed lentiviral vectors expressing antisense oligonucleotides in order to induce an efficient exon...
متن کاملAntisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense.
Dystrophin deficiency, which leads to severe and progressive muscle degeneration in patients with Duchenne muscular dystrophy (DMD), is caused by frameshifting mutations in the dystrophin gene. A relatively new therapeutic strategy is based on antisense oligonucleotides (AONs) that induce the specific skipping of a single exon, such that the reading frame is restored. This allows the synthesis ...
متن کاملAntisense PMO Found in Dystrophic Dog Model Was Effective in Cells from Exon 7-Deleted DMD Patient
BACKGROUND Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD). We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO) targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMD(J)) lacking exon 7 and achieved recovery of dystrophin in skeletal musc...
متن کاملTherapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients.
The dystrophin deficiency leading to the severely progressing muscle degeneration in Duchenne muscular dystrophy (DMD) patients is caused by frame-shifting mutations in the DMD gene. We are developing a reading frame correction therapy aimed at the antisense-induced skipping of targeted exons from the pre-mRNA. Despite introducing a (larger) deletion, an in-frame transcript is generated that al...
متن کاملPhosphorothioate modification of chimeric 2´-O-methyl RNA/ethylene-bridged nucleic acid oligonucleotides increases dystrophin exon 45 skipping capability and reduces cytotoxicity.
BACKGROUNDS Antisense oligonucleotide (AO)-mediated exon skipping is the most promising way to express internally deleted dystrophin in Duchenne muscular dystrophy (DMD), by correcting the reading frame of dystrophin mRNA. An antisense chimeric oligonucleotide consisting of 2´-O-methyl RNA and ethylene-bridged nucleic acid (ENA), targeting exon 45 of the dystrophin gene, AO85, has been shown to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 10 15 شماره
صفحات -
تاریخ انتشار 2001